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Executive Summary

This project aims to develop a fault and intrusion tolerant framework for monitoring cloud

infrastructures in a trustworthy way. It targets typical data center scenarios as those of

Portugal Telecom. The framework will improve resilience and guarantee the needed trust-

worthiness for monitoring cloud infrastructures. The PT data center specific needs will be

our real application case used to validate the proposed fault and intrusion tolerant monitoring

architecture and, at the same time, improve the company monitoring services.

This document introduces the First Specification of the Architecture for the Fault and In-

trusion Tolerant system considered in TRONE project. The presented architecture results

from a study of related works, protocols and technologies that are useful to solve the stated

problem of improving cloud infrastructure monitoring systems resiliency and trustworthiness.

Current security analyzers and monitoring systems for cloud infrastructures, such as HP

OpenView and ArcSight, are based on local, centralized or hierarchical model approaches.

Additionally, they do not look deep into resilience and delivering trustworthy data of its own

services under crash or Byzantine failures caused by attackers or by any other kind of sources.

In this deliverable, we design and present architecture of a fault and intrusion tolerant

monitoring system for cloud computing infrastructures. We assume a Byzantine failure model

and propose state machine replication for providing the trustworthy and resilient monitoring

service. We propose a publish-subscribe system for event dissemination where distributed

probes publish monitoring event messages into the system and monitoring consoles subscribe

the service for receiving specific information. The fault and intrusion tolerant monitoring

system will deliver event messages from probes to consoles in a reliable and trustworthy way.

The proposed architecture is intended to fit the considered scenario, that is, it will improve

trustworthiness and reliable monitoring of infrastructures of PT’s data center. However, the

architecture is generic enough, so that it could also be used in other network operations

scenarios and also to solve other problems such as the heterogeneity of security analyzers

and monitoring tools available for networks and services. Those different tools may become

clients of the system, receiving data from a huge variety of probes and agents distributed

across networked resources and systems.

This deliverable is structured as follows. After a brief introduction and motivation in Chapter

1, we provide a short description of related works, including cloud monitoring and security

analyzer tools, Byzantine fault tolerant protocols, publish-subscribe systems and resilience

through multihoming in Chapter 2. Then, we present the system model in Chapter 3 de-

scribing network, synchrony and fault models. Chapter 4 describes the fault and intrusion
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tolerant monitoring system architecture. Details about the event service and its interfaces

are given. Further, we give examples of TRONE-aware applications such as multihoming-

based applications, security log analyzers and monitoring systems in Chapter 5. Finally, we

present some conclusions and future steps to be done within the project.
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Chapter 1

Introduction

Cloud computing is becoming popular mainly because of the vast available computing re-

sources on clouds at affordable price and hassle free installation. Several data centers are

finding business in providing cloud computing services. A typical data center deploys sev-

eral machines to provide Infrastructure as a Service (IaaS), Platform as a Service (PaaS)

and Software as a Service (SaaS). In addition to these, it has monitoring and management

services for its internal network such as LDAP [66, 52], DNS [9], DHCP [22], SMTP [38],

SNMP [11], Puppet [55] and CFEngine [13]. These are mostly used for maintaining different

features and resources needed to provide effective cloud computing solutions to the end user.

These services are responsible for keeping the correct operation, availability, performance

and security of the cloud infrastructure.

In data centers and companies it is common to have separated VLANs for each kind of

critical applications. For instance, virtual machines (VMs) running control and management

services are usually connected on a separate network, for security reasons. However, virtual

networks may represent a security threat once they are bypassed, which might happen due

to misconfigurations or hopping attacks [49].

Another problem that may arise with different virtual networks is the potentially relaxed

system security cautions taken by network operators. As they rely on the virtual network

isolation theoretical security, they are less likely to care about improving the security of

the systems running inside a particular VLAN. This could lead to highly risky attack prone

scenarios. Furthermore, there are also system software bugs and breaches that can be a

turn key for attackers. Inside these kinds of environment, critical virtual machines running

monitoring services are attack prone. If one of these machines is compromised by the action

of an attack, all monitoring and control systems and information are not reliable anymore,

9
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potentially compromising the overall computing infrastructure operation and management.

In the worst case, a hacked monitoring system could lead to computing components func-

tional faults, critical infrastructure data theft, service level agreement problems. This could

also involve harder and time consuming effort for operation and management diagnosis, as

the console information may have been faked by hackers.

A typical IaaS environment is composed of many computing components such as processing

servers, high availability gateways and servers, high speed switches, routers, storage systems,

cloud controllers, firewall and monitoring and control appliances and systems. The servers,

for instance, are commonly used to maintain many virtual machines, by using virtual machine

monitor software. This kind of infrastructure resides inside data centers and usually makes

use of virtual networks to isolate different data traffics. Maintaining and ensuring correct

operation of these computing components and the overall infrastructure in data centers are

really complex and tricky tasks to be accomplished.

IaaS providers use resources such as probes, consoles and monitoring systems to take care

and control heterogeneous, complex and critical environment, such as cloud infrastructures.

A monitoring system is a key component in data centers. It allows network operators and

managers to discover, diagnose and foresee problems in computing components, being able

to take further actions for fixing or avoiding problems. A typical monitoring infrastructure

is composed of probes collecting data from the different computing components. The probes

can reside inside or outside the computing components. Their main task is to generate input

data for the monitoring systems. On the other side, we have the consoles representing the

interface between the monitoring systems and the end users. All events generated by probes,

and collected by monitoring systems, are sent to the consoles and, subsequently, shown to

the network operators and managers by means of statistics, graphics, dashboard, alerts,

messages, along with other different data representation forms.

In a monitoring infrastructure, probes and consoles can be easily replicated, increasing fault

tolerance. One computing component can have two or more probes observing its behavior.

The data displayed to network administrators can be easily presented by several replicated

consoles. However, the monitoring system, such as ArcSight [33] security threat analyzer

engine, is still a single point of failure. Replicating monitoring systems to achieve fault

tolerance is not an easy task. Unlike probes and consoles, the monitoring systems are big

and have more complex components, thus, less likely to be replicated. Most of existing event

message forwarders and security threat analyzers are designed to work in a centralized way.

This means that those tools are single points of failure and can be more easily attacked and

compromised. Thus, there is space for further investigation and development of monitoring

TRONE D10 Page 10 of 50



CMU-PT/RNQ/0015/2009
x D10: First Specification of the Architecture

frameworks intended to propagate event messages from probes to consoles in a trustworthy

way.

Considering these real environments, scenarios and problems, TRONE project aims to de-

sign and develop a fault and intrusion resilient monitoring system. To achieve this goal, we

propose a new fault and intrusion tolerant monitoring system architecture for cloud infras-

tructure. IaaS are specific and critical computing infrastructures spreading world wide to

provide platform and software as a service for end users. This is the case at Portugal Telecom

(PT), where they are deploying infrastructure on demand products such as SmartCloudPT

[54]. Figure 1.1 illustrates such a cloud infrastructure environment. Computing systems are

isolated, by different VLANs, from monitoring and control systems, as is the case at PT.

Node Controllers
SAN Storage

NAS
Storage Controller

Cluster Controller

Zone 1

Zone 2

Infrastructure as a Service

Control and Monitoring Systems
communication infra/protocols

(VLANs, VPNs, public IP, ...)

VM VM

VM VM

VM VM

VM VM

VM VM

VM VMVM VMVM VM

Figure 1.1: A cloud infrastructure scenario with network isolated monitoring systems

We plan to evaluate the fault and intrusion tolerant architecture using probes and consoles

for monitoring IaaS. We intend to use currently available probes from monitoring and log

analyzer tools such as OSSIM, Snort and ArcSight, and also develop specific probes for

cloud infrastructure. As consoles, we are going to try to use PT’s available consoles as well

as develop simples software version consoles. Furthermore, we intend to use as subscribers

of the monitoring system tools such as ArcSight, CorreLog and Pulso.
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1.1 Motivation

A typical cloud infrastructure monitoring system comprises probes or agents connected to

a console through a centralized event message handling system. One existing solution is

ArcSight Enterprise Security Manager (ESM). It works in a centralized way collecting mainly

security related data, basically logs, from various devices and applications, generating alerts

on the occurrence of critical events. It has a correlation engine to analyze events based

on their context. Portugal Telecom, the major telecommunication operator in Portugal, is

using ArcSight for monitoring their infrastructure’s security. PT envisions the use of cloud

in public critical infrastructures such as grid, health care and other strategic applications.

Concerns about quality of service (QoS) and quality of protection (QoP) when using IaaS

for these environments become very critical because companies and people rely their services

on cloud infrastructures expecting 100% of uptime. Thus, they need to be monitored in a

resilient and trustworthy way for security and availability.

At PT’s environment, devices and systems under monitoring are connected to a console

through a central ArcSight appliance. This centralized monitoring system becomes a single

point of failure or attack. If the system is compromised it will affect the overall computing

infrastructure monitoring and control.

Figure 1.2 shows this abstraction of the monitoring system being used in PT. A single system

can be monitored from different perspectives. Each console shows data of different systems

or different perspectives of a same system. Such a console can also be a single point of

attack or failure. To avoid such single point of failure or attack, we can have several consoles

for each perspective and system. To maintain consistency of monitoring results between

consoles and also to ensure trustworthiness of the events reported by probes, we propose

a fault and intrusion tolerant (FIT) monitoring system in the middle, between the system

being monitored and console.

Figure 1.3 gives an overview of the proposed monitoring system. As can be seen, it should

propagate the probe’s event messages to consoles in a trustworthy way. However, FIT

monitoring system itself, such as ArcSight, can also be a single point of failure or attack.

So, as shown in figure 1.4, we propose to design a FIT monitor with replication in mind to

ensure the trustworthiness and availability of the monitoring system itself.
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Figure 1.2: Abstraction of the existing monitoring system at PT
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Figure 1.3: High level abstraction of the proposed monitoring system
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Figure 1.4: FIT monitoring system improved reliability with replication

1.2 Problem statement

The aim of this deliverable is to propose an architecture and protocols for a cloud infras-

tructure monitoring system designed with fault and intrusion tolerance capabilities. The

monitoring system should be resilient to any kind of faults, allowing messages to go from
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probes to consoles in a trustworthy way.

To address this problem, we propose a topic-based event-based Publish-Subscribe (P-S)

system for event message dissemination. Probes become publishers while consoles act as

subscribers. The FIT monitor works as a reliable framework for delivering data from pub-

lishers to subscribers. To ensure Byzantine fault tolerance (BFT) in FIT monitoring we

propose the use of State Machine Replication (SMR). This makes the monitoring system

resilient to any kind of faults, both crash or Byzantine. On the other hand, it requires the

replicated system to be deterministic.
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Chapter 2

Related Work

In this chapter we briefly describe the state of the art for tools and algorithms related with

the TRONE project goal. In sections 2.1 and 2.2, we present some cloud infrastructure

monitoring and security information event managers. These tools are critical to maintain

current and future IaaS. We give examples of publish-subscribe systems (P-S) in section 2.3.

These systems facilitate the communication between between a set of producers, a set of

consumers and event broker. Producers are naturally content publishers while consumers

become content subscribers. Later, we describe Byzantine fault tolerant protocols in section

2.4. They provide the means for systems that need to tolerate any arbitrary fault. Further,

a brief introduction to multihoming is presented in section 2.5. It is the basis for one of

the proposed TRONE-aware applications. Finally, we conclude the chapter with some short

final remarks.

2.1 Cloud infrastructure monitoring tools

In this section we present some of the most widely known tools available for cloud computing

infrastructure monitoring. They are designed with different concepts and features in mind.

However, all of them have as final goal to meet business needs by providing online information

about the IaaS running components.

Cloudkick [16, 19] monitor is a service available to customers for managing their servers. It

has a good set of built-in checks and also allows customers to execute simple monitoring

scripts, which are plugins written in any language, used by local agents to perform specific

tasks. This allows cloud owners to exactly do what they want because almost anything can

be included inside the Cloudkick monitoring solution. But its flexibility comes with a price.
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End users should be aware of the risks and pitfalls when creating specific designed monitoring

scripts. One of the interesting things about Cloudkick is its design as a service. It even has

a free online try. Some of the monitoring checks are available for free use. Other ones have

to be paid. The customer actually connects the Cloudkick service with its cloud computing

infrastructure freeing the hassle of installing and configuring a new tool into his domain.

Only the monitoring agents have to be installed into the corresponding cloud components

that are being monitored.

Zenoss Unified Monitoring [70, 69] is designed to save customers time in the task of mon-

itoring the entire physical and virtual IT environments from a single point, providing in a

dashboard accurate information about the state of every component being monitored. The

tool provides a big picture of the health of customer infrastructures, including hardware,

virtual machines and their corresponding applications. It unifies event and performance

data in one console, doing cross-discipline analytics to identify the big hits for most ap-

propriate infrastructure investments. It tries to add integrated support for technologies of a

dynamic data center [70]. This includes solutions as Cisco UC, Cisco UCS, VMware vSphere,

VMware vCloud, and NetApp. Zenoss customization for end users relies mostly over per-

sonalized dashboards and views of the monitoring data, focusing on easing infrastructure

management. The solution also provides interfaces for integrating it into external portals or

dashboards.

Amazon CloudWatch [4] is a tool specifically designed to monitor Amazon cloud computing

components like Amazon EC2 instances, EBS volumes and RDS DB instances. It also allows

customers to collect specific data from their running applications and services. The basic

idea is to provide system administrator with resources to collect and track metrics, gain

insights and react immediately to avoid business hassle. The Amazon CloudWath is a cloud

service available for Amazon EC2 clients. It provides customers basic monitoring for free and

paid detailed monitoring. Users are allowed to use the Amazon CloudWatch API into their

applications, being a way of providing customized monitoring metrics. Data is provided to

customers by means of graphs, statistics and alarms through AWS Management Console.

VMware vFabric Hyperic [64] is the application monitoring component of the VMware vFab-

ric Cloud Application Platform [65]. It is intended to provide performance and availability of

Web applications in physical, virtual and cloud environments through its more than 50.000

metrics across 75 application technologies. Besides the pre-defined capabilities, it can be

extended to monitor any component in the customers’ application stack. With the Hyperic

dashboards and reports, users may monitor and demonstrate compliance with SLAs, operat-

ing level agreements (OLAs), and underpinning contracts (UCs) to their respective owners
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and IT management. This is another interesting management feature needed and/or desired

by many client companies. VMware vFabric Hyperic works with operating systems such as

Linux, Windows, Solaris, HP/UX, AIX, BSD family and Mac OS X. It works with virtualiza-

tion platforms like VMware vSphere, vCenter, vCloud Director, and Xen VM. Hyperic also

works with Java platforms and application servers among other technologies. And, finally,

it provides integration with other monitoring tools such as Nagios, OpenNMS, SNMP to

OpenView, Tivoli and Patrol.

LogicMonitor [41] is an IaaS monitoring tool that works with SNMP, JMX for native Java

applications, JDBC for databases, WMI, and more. It provides native support for Citrix

XenServer, VMware vSphere and ESX, Amazon EC2 and Eucalyptus. LogicMonitor is able

to discover IaaS components to be monitored. After being discovered they will be under

the monitoring system, providing for users a complete visibility of they infrastructure in an

automatic way. Through flexible dashboards, it allows managers to correlate performance

data, providing means to identify bottlenecks and proceed infrastructure arrangements.

Monitis platform [47] is a service provided by Monitis company. It is provided as a cloud-

based service. Monitis consists of a central server, global monitoring network, highly scalable

databases, remote probe agents, and graphical user interface applications, working as a

featured and ready to use solution for right away monitoring IT infrastructures. The platform

is capable of managing different IT assets ranging from simple/complex IP devices to web

sites, applications and servers.

The Monitis agents are available for multiple platforms. They use HTTPS polling for con-

nection with the central server, so no changes should be performed on the firewalls. Agents

send data to the central server [47].

Nimsoft Monitor [50, 51, 36] is a solution available either on demand (SaaS) or for local

installation. It is designed to proactively monitor and manage performance, events, and

alarms on both traditional data centers and newer virtualization and cloud.

CloudSec [3] explores the security problem of the IaaS cloud computing model. It is a security

monitoring appliance designed to provide active, transparent and real-time security moni-

toring for hosted virtual machines in the infrastructure as a service model. The tool makes

use of machine introspection techniques for dynamically monitoring the physical memory

of VMware ESX virtual machines. CloudSec monitors the changing kernel data structures

looking for malwares through the effective detection of user or kernel rootkits. In this sense,

it works specifically with individual Virtual Machine Monitors (VMMs), monitoring its cor-

responding virtual machines. One challenge is to transport monitoring data in a secure way
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to the monitoring consoles of systems managed. This is an important task that needs to be

accomplished to ensure that viewed data is reliable and trustworthy.

2.2 Security information event managers

Security information event managers (SIEMs) are important tools to provide real-time se-

curity alerts analysis. They are able to process and correlate security logs and events at a

centralized system. Probes and agents may gather security data and information from dif-

ferent systems and devices, sending them to a central server where a SIEM tool is going to

proceed the further analysis. This is nowadays an important way for companies to improve

their detection, diagnose and response time over security threats.

Some of the existing and most widely SIEM tools are OSSIM (Alien Vault Unified SIEM),

SALSA, Feedzai, SCOM, Pulso, ArchSight SIEM and Tivoli SIEM. Each of them is explained

in this section.

The main goal of OSSIM is to do event correlation with the intention of detecting any threat

and monitor security events. In its architecture, the sensors detect and collect security

incidents data. To do so they are distributed within the infrastructure systems. Inside

OSSIM [1] architecture there is a SIEM component that provides the means to perform

risk assessment, event correlation, risk metrics analysis and vulnerability detection. It uses

a database with normalized information, collected mainly from system loggers, to proceed

data mining and security intelligence algorithms. Results of proceeded analysis are presented

to users through dashboard, alerts, among other means.

SALSA [5] is an analysis tool designed to automate the processing of system log files. It

does control and data flow execution tracing in a distributed system. The tool also retrieves

the system state on each node. SALSA uses additional semantics to analyze event-based

logs to identify for how long the system is performing a specific activity. It tries to identify

the key activities inside system logs by the means of start and end times of specific events.

Another key application of SALSA is related to failure diagnosis. It analyzes the behavior of

failure-free and failure-injected hosts, producing enough data patterns to hypothesize what

failures could be diagnosed by using probability distributions of failure durations.

Feedzai Pulse [27] is designed to provide real-time event analysis over huge amount of data

produced by systems inside enterprise level companies. With a high level architecture in

mind, it has been designed to be used in many applications for online event-driven data
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analysis. Because of this, it is able to receive and process security events from different

sources. Based on pre-defined rules, it will perform security analysis over the incoming data.

The system center operations manager (SCOM) [43] is designed to aggregate all events

generated by different Microsoft components. A system manager defines rules which are

used by the tool to analyze incoming events and take actions like activate alarms based on

identified events that potentially characterize a critical problem or a threat. SCOM has a

specific module, called Audit Collection Services (ACS), intended to identify security threats

or even lack of security compliance such as hacking and viral activities, resources misuse and

attacks.

Pulso [20] has a client-server architecture. All clients, distributed agents, collect data and

send it to a central repository. There a correlation engine processes the data trying to identity

systems QoS status, security breaches, system quality and QoM (Quality of Management).

The reports provided by Pulso may be used on more high level meetings as well as by

technical teams.

ArcSight Enterprise Security Manager [33] is a product of HP company for monitoring en-

terprise threats and risks. It correlates the events occurring within the enterprise, interpret

them and raise security alerts if there is a security breach. It provides ability to collects logs

from over 300 devices and event sources such as OS, routers, switches and storage systems.

The tool is designed to process a huge amount of events per second. It is one of PT’s cur-

rent choice system for receiving and analyzing devices and system logs of their computing

infrastructure. They mainly use the tool intending to find and take actions over potential

security threats.

Tivoli SIEM [34] is designed to work with IBM Tilovi line of products. It has as goal

to facilitate compliance efforts with centralized dashboards and highly developed reporting

capabilities. It is composed by components that enable to investigate and retrieve native

system logs. Tivoli SIEM works with real time analytics in mind trying to understand and

alert on insider threats.

There are other more specific tools such as QuIDScor [56] and Snort Correlation Engine [48].

These tools are specialized for correlating events from intrusion detection systems such as

Snort.

LCE stats for Tenable Log Correlation Engine [60]. This system normalizes and analyzes

logs from network devices. It is able to analyze and process data from different sources

such as firewalls, intrusion detection and prevention systems, network traffics, system and

application logs and user activity. The correlation engine searches in real-time for threats

and vulnerabilities.
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There are also other tools like CorreLog [17] and SEC [61]. The former is a specialized high

performance log analyzer designed to correlate security events of different sources from a

variety of platforms. It uses neural network technology within system rules to output the

impact of future behaviors, trying to predict future systems behaviors, generating alerts and

notifications when ever necessary. And the further tool is a simple event correlator. The

main goal is to provide a less complex and cumbersome tool to smaller event correlation

tasks.

2.3 Publish-Subscribe systems

Publish-subscribe systems are one natural way to solve the problem stated when we have

producers and consumers. The former may publish event messages into a messaging system

while the latter may subscribe for specific contents. The messaging middleware is responsible

for receiving event messages from publishers and send them to the interested subscribers.

This works well for a monitoring system framework where we have probes (publishers) and

consoles (subscribers).

There are researches that provide classifications and comparisons of many available variants

of publish-subscribe system based on decoupling of communicating entities with respect

to time, space and synchronization [25, 40]. They also provide a systematic arrangement

based on the expressiveness of the search (filter) methods, such as topic-based, content-based

and type-based. Some implementation issues involved in such paradigm are also discussed

[25, 40].

There are several works on search methods for efficient filtering and matching algorithms

[26, 53, 32], distributed event routing [7] and adaptive routing to traffic demands [44] in

publish-subscribe systems. However, only a few works addressed the fault-tolerance in P-S

system. One research proposed a publish-subscribe algorithm that tolerates up to δ brokers

crash failures [37]. Brokers form a tree-based overlay topology and maintain a topology map

which contains a partial view of the topology. Partial views are stored in the form of a tree,

with the broker as a root, and with vertices and edges within distance δ+ 1 from the broker.

The work proposed a topology management, a subscription scheme, a publication forwarding

protocol in presence of up to δ failures, a recovery procedure and an optimization of number

of network messages.

Another work [58] describes a fault-tolerant and secure service of sealed-bid auctions. The

proposed algorithm can tolerate one-third of Byzantine failures of auction servers and any
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number of bidder failures. It uses PVS (Prototype Verification System) for formal specifi-

cation and verification of the system properties. This application maps to a loosely coupled

publish-subscribe system.

In the TRONE project the research will focus on Byzantine failure and intrusion tolerant

publish-subscribe systems, which is still a subject that needs further investigation and de-

velopment.

2.4 Byzantine fault tolerant protocols

There is one work [12] that proposed a practical Byzantine fault tolerant protocol, PBFT,

which is a form of state machine replication algorithm. The proposed algorithm allows the

system to tolerate at most f Byzantine faults within 3f + 1 replicas and is also suitable for

asynchronous systems. It involves three phases in normal case operation (i.e., no faults case):

a) pre-prepare; b) prepare; and c) commit. These three phases constitute the agreement

protocol of the algorithm which decides the order of execution of requests. To mask failures

of the primary, the algorithm uses the view change protocol.

Proactive recovery mechanism for BFT have been proposed [12] to enable system recovery

from any number of failures over its lifetime provided that the number of faulty replicas is

limited to one-third of total replicas within a window of vulnerability. This work was followed

by several others with the aim of optimizing BFT’s performance overheads [39, 68, 67].

One recent research proposed the Zyzzyva protocol [39] for reducing the cost and design

of BFT state machine replication. The protocol allows replicas to speculatively decide on

which order to execute on requests without running the agreement protocol.

There are also works focusing on improving on the minimum number of replicas required to

tolerate Byzantine failures. One of them [68] showed that 2f +1 replicas may be sufficient to

execute requests and tolerate f faults. This is achieved by separating agreement protocols

and execution, resulting in 3f +1 replicas to order the requests and only 2f +1 for execution.

Another work [67] showed that the number of replicas required for execution can be further

reduced to f+1 with the help of virtualization technology. Another approach for reducing the

number replicas have been developed [57]. It proposes a state machine replication algorithm

for Byzantine agreement in wide-area networks. A trusted component is used on the servers

to reduce the number of replicas and communication steps required for agreement. In doing

so, it requires only 2f + 1 replicas.
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Further, a brief BFT protocols state of art can also be found [8]. The author presents solved,

partially solved and open problems stating some challenges that still need to be addressed.

The BFT protocols will be an important part of the TRONE project for supporting the

development of a reliable and trustworthy monitoring architecture. One way to use Byzantine

fault tolerant protocols is through SMaRt [2]. It is a high performance Byzantine-fault-

tolerant state machine replication library developed in Java. Its main strengths are simplicity

and robustness. Thus, it can be used as a building block in the development and deployment

of a fault and intrusion tolerant monitoring system, as proposed in this deliverable.

2.5 Resilience through multihoming

Stream Control Transport Protocol (SCTP) [10] is a connection-oriented protocol designed to

assure reliable transport and to support multihoming natively, through different mechanisms.

First, via address management at the association setup, during which a node informs its

peers about its IP addresses (or host names). Second, HEARTBEAT chunks are employed

to monitor peers and path status (active or inactive), in configurable intervals. SCTP uses

a selective acknowledgments (SACKs) mechanism to enable accurate RTT measurements

over each path and fast retransmission of missing data. Finally, for path selection, as the

association setup proceeds, an active path is chosen as the primary path, among the several

that can be available. Moreover, applications can configure the behavior of SCTP, though

the SCTP API [28]. For instance, to support connection-oriented features (e.g. as TCP) or

connection-less features (e.g. as UDP).

SCTP with its innate features to support multihoming, has been extended to include support

for mobility (mSCTP) [30] and to enable concurrent transfers over multiple paths (CMT)

[35]. mSCTP allows dynamic address reconfiguration by modifying IP addresses that were

negotiated during the SCTP association setup. Such support is specified with new message

types that contain the IP address and parameters to indicate the operation to perform,

namely add, remove or modify the primary address. mSCTP can be employed by fault-

tolerant applications, which require fast recovery.

Concurrent Multipath Transfer (CMT) [35] adds to SCTP simultaneous data transfer ca-

pabilities across multiple paths. CMT addresses some performance issues of SCTP, such as

unnecessary fast retransmission at the sender and increased ACK traffic due to fewer delayed

ACKs. If the available paths have unequal delay or bandwidth, a standard SCTP receiver

can experience packet reordering, which will consequently lead to fast retransmission at the
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sender. CMT mitigates these issues by introducing modifications in the SCTP specifica-

tion, where a receiver delays the ACKs, instead of immediately acknowledging out-of-order

packets. Further, the packet loss measurement mechanism takes into consideration historical

information, in addition to the information conveyed by SACKs.

SCTP is not used widely as TCP or UDP, nevertheless it is already supported in several

operating systems, such as Linux, FreeBSD and Mac OS. In addition, applications requiring

high availability benefit with SCTP, such as Reliable Servers Pool (RFC3237).

Applications based on SCTP rely on the protocol robustness and reliability. However, it

may face some problems when the network configuration changes. Some recent works try to

address the potential drawbacks caused to SCTP-aware applications due networking changes

[42, 59] requiring further SCTP reconfiguration to maintain reliability and efficiency at high

levels.

Within TRONE project we aim to use a probe for collecting SCTP metrics and further

using them to reconfigure the protocol. This may be needed when changes on the system

or network occur such as a network card operational or hardware problem and connection

link intermittent faults. In these cases, proactive SCTP reconfiguration will improve the

reliability and performance of SCTP-aware applications.

Remarks on related work

Cloud infrastructure monitoring tools and security information event managers can be com-

bined to increase the capacity of collecting and analyzing performance, fault and security

data (logs, events, among other things) inside today and future cloud infrastructures. This

is an important way to improve intentional or non-intentional faults detection, diagnosis and

correction over IaaS. These cloud infrastructures can be characterized as critical systems

because they are used to provide every kind of service, ranging from normal applications

to very critical services. In each case, users heavily rely on cloud providers to have their

services 100% available, secure and reliable. Any security threat may impact in financial and

personal losses. Depending on the service being provided, such as energy grid and health,

any failure is critical and may led to a big impact for many customers.

The most common feature among all tools resides on the final goal of monitoring IT infras-

tructure, specially computing clouds. Another three features could also be added, which are:

a) they work all in a centralized way, having a central point of incoming data and access;

b) some of them were designed for specific environments and/or scenarios; and c) they are
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all vulnerable to intrusions and faults tolerant prone because their architecture does not

rely on resilient replicated components. The latter could lead to critical problems like data

corruption. An attacked monitoring server could, for example, compromise the overall mon-

itoring information, which is the most important thing to be carried out in a trustworthy

way in these kinds of systems because customers completely rely on the data provided by

the monitoring systems. Reliability and trustworthiness are the main issues addressed by

the TRONE project. The proposed architecture will use known protocols and technologies

to guarantee secure and reliable monitoring services. Other tools may even become clients of

the fault and intrusion tolerant architecture as it will be shown on the remaining chapters.

Publish-subscribe systems and Byzantine fault tolerant protocols are important components

in the FIT monitor architecture. The first ones will provide a way and means to push and

pull messages from probes to consoles in a trustworthy manner. And the second ones will

provide the protocols and mechanisms needed to create a fault and intrusion tolerant system.
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Chapter 3

System Model

In this chapter we introduce the network, synchrony and fault models that are going to

be taken as assumptions for the proposed fault and intrusion tolerant monitoring system.

Probes, consoles and the fault and intrusion tolerant monitoring system itself are assumed

to work with the conditions stated by the models here presented.

3.1 Network model

We can have different network topologies [15] and technologies, even if we are talking about

a company. The most common network topologies are bus, ring, star, extended star, hi-

erarchical and mesh. They can be combined to compose hybrid topologies in a number of

ways. Even a simple company may have different local networks, with different topologies,

connected through gateways, routers, among other network devices.

One local physical network can be segmented in several virtual networks, called Virtual Local

Area Networks (VLANs). VLANs are widely used in enterprise and academic environments

to simplify address allocation across different administrative units [31]. They can serve for

many purposes, like isolating different kinds of traffic, avoiding complete network blackouts

due the occurrence of failures or attacks, provide better traffic control, isolate unreliable users

from administrative and trusted ones, separate data from management traffic, among other

applications. In most of cases the basic idea is to increase levels of flexibility or security.

Security is one of the most critical issues in cloud infrastructures [62]. VLANs are commonly

used inside data centers to isolate different kinds of data traffic. Further uses include creating

virtual networks attached to customers. However, VLANs may represent a security threat

once they may be bypassed due misconfigurations or hopping attacks [49].
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Virtual Private Network (VPNs) represent a way for companies to reduce costs [71]. A VPN

enables LAN or VLAN interconnection through the public Internet without a typical private

line or frame relay services [45], resulting in lower costs for companies. Two of the main

challenges of this low cost alternative are security and reliability because the virtual network

is configured and used over public infrastructures which can suffer from problems such as

overloads, instabilities, attacks and temporary unavailability with different root causes.

Nowadays, LANs, VLANs and VPNs are commonly used with IP networks. They work with

IP and run on transport level protocols like TCP and UDP both widely used by infrastructure

and customer applications.

In the TRONE project we assume the TCP/IP model with fully connected networks. That

is, all machines in the cloud infrastructure are accessible from each other. They may be in the

same physical network, in different virtual networks or even in different physical locations.

However, they see each other. In a physical LAN all machines naturally see their networked

neighbors. Using different VLANs there will be at least one connection point, like a switch,

a gateway or a router inside the same physical network. On the latter case, using VPNs or

even private lines, all remote sites are connected through a virtual or physical communication

channel. Figure 3.1 illustrates the use of VLANs and VPNs. A company X can have a LAN

A and a second LAN B. Inside each local area network it may have different VLANs, each

of them for a specific purpose. As an example, VLAN A for customer systems, VLAN B for

storage systems and VLAN C for monitoring and management. And both physical LANs,

and respective VLANs, are accessed through the Internet through a VPN. So, in theory, the

company devices and systems are accessible both from LAN A and LAN B.

VLAN A VLAN C

VLAN B VLAN A

LAN A

VLAN CVLAN A

VPN A

VLAN B VLAN A

Internet

VPN A

LAN B

Figure 3.1: Example of enterprise networks
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3.2 Synchrony model

The synchrony model refers to assumptions related to the notions of time and timeliness.

Since the complexity of the solutions and the correctness of the system depend on these

assumptions, they should reflect as accurately as possible the real characteristics of the exe-

cution environments. Traditionally, distributed systems have been developed by considering

one of the two extreme models of synchrony. The asynchronous model, also called time-free

model, does not make any time-related or timeliness assumption [29]. On the other extreme,

the synchronous model assumes that all system activities are executed within known tempo-

ral bounds, which includes local activities (process execution) and distributed ones (message

transmission). However, many real systems are not fully asynchronous nor fully synchronous.

Therefore, there exist models of partial synchrony to cover various intermediate cases, for

instance assuming that there are reliable local clocks or that only some components are

temporally predictable.

In the TRONE project we focus on environments in which many computational components

interact through shared networks in manners that cannot be considered predictable with

respect to latency. On the other hand, current systems are equipped with very accurate and

reliable hardware clocks, which are necessary for the correct system operation. These clocks

are usually synchronized by means of software protocols (such as NTP [46]) and therefore

it is possible to have an absolute notion of time in the overall system. This is particularly

important when considering distributed operations, as we consider in TRONE.

The well-known asynchronous and synchronous distributed system models are not adequate

in the case of TRONE. This model is very good in the sense that distributed algorithms

are always safe, because no temporal property can be violated. However, it is impossible

to reason about time or temporal relations about events, which renders the system model

impractical. In the synchronous model it is possible to ensure that distributed activities are

executed in bounded amounts of time, allowing the development of real-time systems. The

problem is that the assumed bounds may not be secured all the time, leading to failures in

distributed algorithms and systems developed over these assumptions.

It is possible to consider several models of partial synchrony [21, 23, 14, 63]. However, we

believe that the most appropriate model in the case of TRONE is the timed asynchronous

model [18]. This model can be described as being fundamentally an asynchronous model

with the additional assumption that processes have access to a physical clock with a bounded

rate of drift. This is precisely what we need. The authors of [18] have observed that most

computing systems (such as the systems we consider in TRONE) have high-precisions quartz
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clocks, which renders the assumption reasonable enough. Practical systems can then be built

in infrastructures that alternate between synchronous and asynchronous behavior, with the

system making progress when there is enough synchrony, being possible to detect timing

failures otherwise.

3.3 Fault model

When characterizing service failures, from the consistency perspective, we distinguish the

system failure in a) consistent failures; and b) inconsistent failures [6]. In the former case all

system users get aware about incorrect service in the same way. The latter kind of system

failure leads to different user views of incorrect services. Even more, some users may not

notice at all service failures. These kinds of failures are known as Byzantine failures.

In TRONE we consider different fault models for the different components of the monitoring

infrastructure. In fact, observing the abstractions depicted in Figure 1.4, that is, probes

or consoles in the role of clients, and event brokers in the role of servers, we consider that

clients are reliable and trustworthy, while servers can be affected by faults, ranging from

crash to Byzantine faults. We deal with the problem of ensuring a trustworthy monitoring

service in spite of Byzantine faults, which is the critical problem, because services are usually

centralized. On the other hand, there are usually many probes and many consoles, which

already provides a reasonable level of resilience against attacks.

So we consider all possible failures that may affect the correct behavior of such monitoring

service. For instance, abnormal behavior may happen due to some power, software or hard-

ware failure, corresponding to omission or crash failure semantics. It may also happen due

to delays or corrupted data, either intentionally or accidentally inserted in the system.

Furthermore, we assume that the monitoring system can tolerate up to f faulty replicas.
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Chapter 4

Fault and Intrusion Tolerant

Monitoring Architecture

In this chapter, we describe the first architectural specification of the fault and intrusion

tolerant monitor. We present some basic definitions for the terms used in this report. Then

we explain main components. Next, we give an overview of the broker’s internals. Finally,

we describe also the FIT monitor’s essential programming level interfaces.

4.1 Basic definitions

We present here some basic definitions that are going to be used through the first specification

of the fault and intrusion tolerant monitoring architecture. These definitions will also help

to better understand some essential concepts of the proposed architecture.

FIT monitor: FIT monitor represents the fault and intrusion tolerant architecture first

specified in this deliverable. It has as main components replicated brokers, which are

responsible for receiving and sending messages to the clients (probes and consoles) in

a trustworthy way. The monitor is tolerant to crash and Byzantine failures.

Probe: A probe or an agent is a FIT monitor client running in monitored devices on ma-

chines, for collecting monitoring data. On occurrence of any critical event or just to

report the component status, the probe will generate event messages and send them

to FIT’s brokers. For the proposed architecture, probes are known as event message

publishers.
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Console: A console is a second kind of FIT monitor client. It is a software or a hardware

component that receives event messages and presents them for network or infrastruc-

ture managers. A console can be a simple display as well as a rather complex system

such as a security information event manager and a high level dashboard-based moni-

toring system. These clients are also known as event message subscribers.

Event message: An event message is a data unit that contains information about a mon-

itoring or alert event triggered inside the object or system which is under continuous

monitoring by probes. The event message contains the essential information of state

of the computing component.

Channel: It represents the communication flow inside the brokers used by probes and con-

soles. A channel is identified by a TAG. Each different TAG requires a different chan-

nel. Probes publish event messages in the channels while consoles will receive those

messages.

TAG: A TAG is used to name a channel, which typically serves to disseminate a certain

kind of events, for which common properties must be ensured. For instance, there

may be channels (identified by some TAG) for event messages related to network,

storage, system usage and security threats. The TAGs are used to create different

communication channels inside the brokers.

CLASS: Classes are used to define characteristics of the channels identified by TAGs. Each

CLASS may specify a different quality of service (QoS). If some set of messages are

urgent and need to maintain message ordering, they should go through a channel

instantiated with a CLASS that specifies the required quality of service. We consider

that QoS can be specified along the following three vectors: fault-tolerance, order and

urgency. Based on the QoS requirements of each channel, a specific CLASS must be

used for that channel. Based on the QoS requirements of each TAG, the channel and

CLASS parameters are fixed.

Fault-tolerance. We assume two fault models for the monitoring system: crash and

Byzantine. In the crash fault model, a broker may crash and stop while in the Byzantine

fault model, a broker may behave arbitrarily. Based on these two fault models along

with other QoS constrains, we propose different protocols for the monitoring system.

Order. A CLASS decides the order with which the event messages will be sent to

the client.By order we mean the ordering properties of the events delivered to clients,

which can range from unordered delivery, to totally ordered delivery across all clients.
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Other intermediate ordering requirements, such as temporal ordering or causal order-

ing, might also be useful for certain types of events.

Urgency. Urgency is a CLASS property which describes the urgency of action needed

for specific event messages generated by a probe. For instance, some events might be

very urgent and therefore it might be useful to instantiate a channel of urgent CLASS,

so that events sent through this channel will be handled and forwarded as soon as

possible (which might depend on the ordering requirements).

4.2 Main components

Here we explain the building blocks of the fault and intrusion tolerant monitoring architec-

ture. Figure 4.1 shows an abstraction of the proposed FIT monitoring system.

push msg

approach

approach
Event handling

Re
pl

ica
tio

n
push msg

Clients

Servers

Clients

PROBES
Fault tolerance

CONSOLES

Figure 4.1: FIT monitoring system model and main components

The FIT monitoring system’s main components are clients (probes and consoles) and servers

(replicated event brokers). Servers are basically implemented with event handling sub-

systems and replication mechanisms. We explain each of these components.

Client side

The client side is composed of probes and consoles. Probes publish event messages and

consoles subscribe to some channels to receive specific event messages.

Probes generate event messages on occurrence of any critical event or to report system status.

They send the event messages to broker’s specific channels. The event messages are then

propagated by the broker to all interested consoles.

A probe can be a program residing in computing components such as network switch, router,

storage system, virtual machine inside a host. It either resides in the device being monitored
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or in another machine. In the latter case, it collects monitoring data through a network or

other cable connection within the system being monitored.

A console is either a machine with a simple display or a more complex system with local

database for storing event messages and some software to analyze, process and display statis-

tics, alerts and critical events. The consoles are used by network operators and managers

to see how the infrastructure is working and to take further decisions on the occurrence of

a threat. Further, a console may even be a resource manager that automatically analyzes

event messages and takes actions trying to correct or avoid problems on the monitored sys-

tems. In this case a human operator is needed only to receive the resource manager action

notifications or to solve a problem that it could not automatically solve.

Consoles have also an integrated voting interface. It is needed to deal with Byzantine faults

and ensure the trustworthiness of event messages. To do so, the voter mechanism performs

a voting on the messages received from different broker replicas before displaying it on the

console.

Probes and consoles are clients of the FIT event broker. Probes generate event messages and

push them into channels. FIT event broker acts as a server receiving the event messages.

It afterwards pushes the event messages to all interested consoles. Probes and consoles can

either be active or passive clients. Active clients send-push information to the server while

passive clients wait for the servers which are going to pull messages from them. Probes and

consoles can both be active or passive and the publish-subscribe service can be implemented

over TCP (connection-oriented) or UDP (connectionless).

Server side

A FIT monitor essentially provides a replicated service and acts as a server for probes and

consoles. It manages all the messages received from different probes and propagates them

to consoles in a trustworthy way. It provides an interface in which it receives the event

messages from different probes. fault tolerance, urgency and order. The event messages of

the channel will be pushed to all subscribers of that channel.

Crucial events need to be delivered to consoles despite Byzantine faults affecting the event

broker service. The system administrator specifies the fault tolerance requirement for event

messages. Inside the server, messages requiring only crash fault tolerance are sent to sub-

scribers using some simple crash fault tolerant protocol with or without ordering. On the
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other hand, messages requiring Byzantine fault-tolerance are forwarded using Byzantine fault

tolerant protocols.

Some event messages carry crucial information and need guaranteed delivery to the console

while other messages just need to be sent with best effort. There are two fault tolerant

mechanism to deal with this: Byzantine and crash. The system administrator specifies the

fault tolerance requirement for event messages. Inside the server, messages requiring the

best effort delivery are forwarded using crash fault tolerant protocol. On the other hand, for

event messages requiring guaranteed delivery are forwarded using Byzantine fault protocol.

There is a trade off of choosing any one of these protocols. Although crash fault tolerant does

not provide guaranteed of the event messages to consoles, it performs less time consuming

operations. While BFT protocol ensures delivery of messages, it is more complex and time

consuming because of the extra operations needed for agreement and ordering. In addition

to fault-tolerance, other aspects of forwarding messages are ordering and urgency.

After the order of event messages to be delivered to subscribers is decided by the broker, event

messages are put into queues and then sent to the respective interested subscribers/consoles.

Fault and intrusion tolerance. A FIT monitor acts as a broker and manages all moni-

toring event messages. However, it can be a single point of failure or attack. To continue

providing trustworthy and resilient monitoring service, we replicate the event broker. We

propose to use state machine replication which allows to perform arbitrary operations pro-

vided the operations are deterministic. We assume that any of these event brokers can fail

or behave arbitrarily due to some malicious attack or failure. As processing of event mes-

sages is done at consoles, preserving the integrity of their content is also crucial. Towards

ensuring faults and intrusions tolerance, we also propose a probe to use to use public-key

cryptographic methods such as those provided by RSA to sign the event messages using its

private-key. A probe can have several identities and it may impersonate other probes. Thus,

a probe is required to sign event messages generated by itself, using its private key so that

the broker can authenticate the probe’s identity. This also ensures the integrity of the event

messages generated by the probe. Since the message is being processed at the console, such

cryptographic methods enable the console to verify the integrity of the event message sent

by the probe.

4.3 Broker architecture

Before sending any monitoring data to the broker, probes need to see if there are channels

where the event messages can be published. Figure 4.2 is an example of communication
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channels inside a broker. The channels are created by the probes. Each probe can create

one or more channels, with the method Create a Channel(CLASS,TAG), for different kinds

of event messages. One or more probes can register to publish events in the same channel,

using the method Register to Channel(TAG). As can be seen in the figure, two probes get

registered for channel T1. After the registration, both probes will be able to send event

messages to that channel. The broker will maintain a registration table consisting of probes

and the corresponding channels they are assigned to deliver monitoring data. We assume

that each channel can support a pre-defined number of registered probes. This limit is defined

based on the broker processing capacity. So, it is going to be specific to each deployment

environment.

A console can subscribe to one or more channels using the Subscribe to Channel(TAG)

method. Once it is subscribed, the console will start to receive every event message that

is propagated through the channel. The broker maintains a subscriber table to identify

each console with the corresponding channels. This information is used to deliver the event

messages to the right subscribers. The number of consoles subscribed to one or more channels

is limited by the broker processing capacity, similarly to the case of the probes.

There can be a channel which is not being used for a long period of time, neither by publishers

nor by subscribers. The channel T4, in the Figure 4.2, represents a communication path not

being used either by probes or subscribers. Such channel can be removed from the system.

For each channel there will be a timeout value to decide if the channel should be kept or

not in the system. If the timeout value expires and the channel did not receive any event

message during the period of time, it can be removed from the system. If a probe related

with the removed channel was down and comes up again, it can create once again the same

channel. All consoles subscribed to the channel before its removal will be notified and are

able to subscribe again.

A broker manages every event message that arrives from probes. To deal with event mes-

sages arrived from probes and to deliver them to respective subscribers, the following broker

components are important: interface, Crash Fault Tolerant (CFT) protocol, Byzantine Fault

Tolerant(BFT) protocol and TAG-based filter. Details of the broker’s architecture with crash

and Byzantine fault tolerant protocol are given in Figures 4.3 and 4.4, respectively.

Interface. The interface provides five methods to enable communication flows between

publishers, brokers and subscribers. It allows creation of an event channel between a pub-

lisher and a broker, probes to register and publish messages to a channel, and subscribers

to subscribe and receive messages to/from a channel. The channels created inside a broker

are input queues that receives event messages. Through the interface, the channel charac-
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Figure 4.2: Dealing with channels inside the broker

teristics is defined. For dealing with the channels the broker will have a table with columns

< CLASS, TAG >. It will be filled with entries stating different TAGs and associated with

different CLASSes specifying QoS requirements. The interface is the same for both crash

and Byzantine fault tolerant protocols.

CFT protocol. The CFT protocol is used inside the broker when an event message requires

to reach subscribers in presence of crash faults in the channels. Some of these event mes-

sages may carry time-critical event information requiring urgent treatment while others may

not carry time-critical information but may carry crucial information. There can be other

messages that may not be critical. Some of theses messages may or may not require order-

ing. Within CFT protocol, based on the QoS specified by the channel, different actions are

taken.There can be several sub-protocols to deal with various combinations of the quality

of services. Here, we are considering three specifications of the CLASSes for CFT proto-

col: CFT O, CFT NO U and CFT NO NU. The CFT protocol has two sub-protocols: CFT

with order (CFT O) and CFT without order (CFT NO). The CFT protocol uses CFT NO

to deals with even messages for the CLASSes specified by CFT NO U and CFT NO NU. In

CFT NO, event messages that need urgent treatment are put in an urgent (U) queue while

others are put in a not urgent(NU) queue. Based on a dynamic scheduling policy, the event

messages from urgent and not-urgent queue are forwarded to the TAG-based filter.

Figure 4.3 shows the data flows inside the broker with crash fault tolerant protocols. As can
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Figure 4.3: Broker architecture with crash fault tolerance

be seen in the figure, there are five probes {P1, P2, P3, P4, P5} publishing event messages

to different channels, which are identified by four TAGs {T1, T2, T3, T4}. It should be also

noted that there are two probes {P4, P5} publishing messages to the same channel T4. The

channels inside the brokers are represented by queues that receive the event messages and

forward it to the CFT protocol. Based on the QoS requirements of each channel, different

CFT protocols can be used. The TAG-based filter receives event messages from CFT pro-

tocols and, based on the TAG on event messages, fills the output queue of each subscriber.

To do so, it uses the subscription table for filtering the event messages. Each subscriber

receives event messages sent through a FIFO channel. As shown in the figure, there are five

subscribers {S1, S2, S3, S4, S5}, subscribing to different channels. Subscribers {S1, S2, S3}

receives event messages with TAGs {T1, T2, T3}, respectively while subscribers {S4, S5}

receives event messages with same TAG T4.

BFT protocol. The broker uses BFT protocol to maintain total order between the event

messages requiring to reach subscribers in presence of Byzantine faults across the channels.

There is only one CLASS, BFT, for specifying the fault tolerance requirement. Since, any

BFT algorithm maintains a total order, the ordering requirement is implicit.

The BFT protocol uses state machine replication to tolerate Byzantine failures. Each broker

behaves as a state machine replica. The event messages across different channels requiring

Byzantine fault tolerance becomes inputs to the state machine replica. To decide on the
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order of event messages, brokers use an agreement protocol among themselves. Once the

ordering of the event messages is decided, it is put in an abstract queue before forwarding

it to the TAG-based filter. The TAG-based filter puts event messages in a separate queue

specific to a subscriber based on the TAG it has subscribed. The order in which the messages

are put in the queue specific for a subscriber denotes the state of the state machine replica.

Any order other than the decided one at any broker will lead the broker to a different state

as the TAG-based filter will then forward event messages out of order to the queue specific

for a subscriber which in turn reach subscribers in out of order. The queue before TAG-

based filter contains event messages from different channels for different subscribers. After

TAG-based filter, there is separate queue for each subscriber. Since the processing is done at

the subscribers, the output of all state machine replicas must reach subscribers in the same

order. This is required when different subscribers subscribed to the same system status

information or critical events. After ordering, stored in the queue for a subscriber based on

the TAG, the event messages are sent to the respective subscribers assuming a FIFO channel

between TAG-based filter and the subscriber.

The BFT protocol also requires to run the agreement protocol to decide on the subscription

table entries. When a subscriber requests for subscription to a specific TAG, all correct

brokers must receive the request and agree on updating the table so that they will have

same copy of the table. This is essential because TAG-based filter uses this table to filter

event messages based on TAG and puts it in the subscriber’s queue. So, brokers must agree

on the list of subscribers interested on a specific TAG. Thus, the subscription table also

becomes the part of the state of the state machine replica.

Figure 4.4 shows the data flows inside the broker with Byzantine fault tolerant protocols,

using state machine replication model. As stated before for the crash fault tolerant protocol,

there are five publishers and five subscribers, using different communication channels. The

main difference between CFT and BFT is related with the state of the subscription table

and the TAG-based filter output queues. When using BFT-SMR all replicas are going to

execute every command in the same order, generating the exact same output. This requires

an agreement and total ordering protocols to guarantee the same state among all replicas.

TAG-based filter. The TAG-based filter contains a subscription table with columns

< TAG, Subscibers, Status >. It uses the table to filter event messages based on their

TAGs and fills the output queue specific to a subscriber accordingly. In the case of BFT

protocol, these output queues for sending event messages to specific subscriber also becomes

the part of the states in the state machine replica.

Voter At the subscriber, there is a voter interface that deals with trustworthiness of the
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Figure 4.4: Broker architecture with Byzantine fault tolerance

event messages. It is used in conjunction with the BFT protocol. It collects event mes-

sages sent by broker’s TAG-based filter and does a majority voting before delivering them

to applications such as displays. At the voter, there will be a table with entries for <

probeid, SEQ,B1...Bm >. The voter fills this table on receiving event messages from the

broker and does a majority operation for each row.

4.4 Common interfaces

The broker provides four interface methods:

1. Create a Channel(CLASS,TAG): An event channel is created based on a TAG between

a broker and a publisher. A subscriber interested in a specific TAG subscribes to

respective TAG and receives data from the broker corresponding to it. A channel is

created for each TAG. A TAG may be associated with several publishers and brokers.

A TAG in the monitoring system can be a state of processor, disk usage, among other

things.

A CLASS denotes how event messages in the channel will be treated or propagated. It

specifies the characteristics of the channel. A CLASS may incorporate characteristics

such as Ordering, Urgency and Fault-tolerance.

The channel creation method is called during the bootstrapping of the monitoring

system or by any management software.
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2. Register to Channel(TAG): A probe requiring to publish messages for the same chan-

nel will do a registration to the channel using this method.

3. Publish(TAG, M): The probe publishes an event message by calling Publish(TAG, M)

method. TAG is the topic that identifies to which channel the message belongs. A TAG

is associated with channel. The channel has a quality of service CLASS associated.

Therefore, CLASS is not required in the publish() method.

M is a event message that is generated by a probe and it has the following format.

M =< probe id, SEQ,DATA, ts >σprobe id

where

• prob id denotes the identification number of the probe. Each probe must have an

unique identifier which helps in identifying probe generating a specific message.

• SEQ is the sequence number of the event message generated by the probe with

prob id

• DATA is the composition of attributes and values being monitored in the systems.

• ts denotes time stamp when the message is generated.

• < m >σprob id
denotes the message digitally signed by the Probe with its private

key σprob id.

4. Subscribe to Channel(TAG): Each subscriber will subscribe to a specific TAG by

calling the method Subscribe(TAG). Thus, a subscriber knows about the channel as-

sociated with a TAG. Several subscribers can be associated with a single TAG.

5. Receive(M, TAG): This method is provided by client’s interface. A subscriber or client

receives the event message in the channel associated with TAG.
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Chapter 5

TRONE-aware Applications

5.1 SCTP-based applications

One of the TRONE-aware application will be a SCTP control agent. It will work as a probe,

collecting SCTP metrics and sending them to FIT monitor, and also as a console, receiving

back control commands to reconfigure SCTP locally. The basic idea is to improve reliability

and performance of local SCTP-aware applications in cases of network reconfiguration or

faults. In some cases, as stated by recent works [42, 59], it is interesting and useful to

proactively reconfigure SCTP protocol to avoid applications’ performance and operation

degradation.

The SCTP TRONE-aware application is characterized by the following capabilities:

• configure SCTP through SCTP API;

• retrieve status information of SCTP operations;

• output SCTP information;

• receive information that can enhance SCTP behavior, avoiding operation and perfor-

mance degradation.

Figure 5.1 highlights the architecture of the SCTP TRONE-aware application. As can be

seen, we have one publisher and one subscriber both on SCTP-aware hosts and central site

where SCTP collected metrics are stored. Those collected metrics can be used by the SCTP

event analyzer to identity network changes, problems and faults at hosts and then proceed

the publication of SCTP reconfiguration parameters.
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Figure 5.1: Example of TRONE-aware application within SCTP protocol

The communication channel MP1 allows the application probe to output the status of the

SCTP operation. These status messages are received through communication channel MP4

and stored on a central database by a subscriber. This data is processed by a SCTP event

analyzer to identify problems caused by failures or attacks.

The communication channel MP3 receives information, send by the SCTP event analyzer

through a publisher using communication channel MP2, that is relevant to configure SCTP

in the case of failures or other attack-related events. The collection of data is executed per

request, based on a certain frequency, or an event-basis. For instance, when new associations

are created, or if primary addresses are changed (e.g. can act as a pointer regarding failures

in current paths). It should be noted that any possible configuration of SCTP, through the

TRONE-aware application may also impact standard SCTP applications. In any case, if this

is correctly managed, it can bring advantages in the event of failures.

Communication channel MP1

The information that can be out putted from the SCTP TRONE-aware application can be

divided into two classes: SCTP information and implementation-specific information. With

the former class, probes have information regarding the SCTP operation. With the latter,

specific mechanisms can be implemented, such as to measure packet loss, delay or other

relevant metrics. Table 5.1 summarizes the SCTP information that Trone-aware application

can output.

The implementation-specific information includes network performance metrics such as packet

loss, delay, and delay-variation. These metrics are defined and measured according to the IP

Performance Metrics [24] working group recommendations. Despite the plurality of metrics

available by this group, only a subset is interesting in the context of Trone, as summarized

in Table 5.2.
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SCTP Option Description
SCTP NODELAY Activation or de-activation of Naggle-algorithm

(if not activate SCTP puts more packets in the
network).

SO RCVBUF Receiver buffer size.
SO SNDBUF Sender buffer size.
SO LINGER To perform an abort primitive.
SCTP PRIMARY ADDR Set, get the peer primary address.
SCTP DISABLE FRAGMENTS If enabled no SCTP fragmentation is performed.
SCTP FRAGMENT INTERLEAVE How presentation of message occur to receiver,

according to three levels.
SCTP SET PEER PRIMARY ADDR Set the primary Address of an association.
SCTP INIT MAXSTREAMS Initial maximum number of streams required.
SCTP EXPLICIT COMPLETE Enables or disables explicit message completion.

Table 5.1: SCTP options in TRONE-aware application

Metric How it is measured Description
Temporal Connectivity RFC 2678 Measure connectivity between hosts.
Path Capacity RFC 5136 Smallest capacity of a path on a link.
Round Trip Delay RFC 2681 Round-trip delay across paths.

Table 5.2: IPPM metrics

5.2 Security log analyzer

Security log analyzers work with a central model. This means that they have to receive

data from different sources or probes, store it locally for further analysis. With the proposed

FIT monitoring system those kind of tools may become clients of the fault and intrusion

tolerant monitoring system, being able to receive event messages from probes and send event

messages to consoles in a trustworthy and reliable way. Doing so, an IaaS could more easily

have different security log analyzers, hassle free, running on their environment because they

all can use the resources and data provided by our general purpose FIT monitoring system.

In the TRONE project we want to adapt at least one security log analyzer to become a

FIT monitor client. Examples could include OSSI, SALSA, Puslo or even ArchSight. Select

which one is going to be used depends on technical details such as the access to its source

code or an API that allows to implement extension for the tool.

TRONE D10 Page 42 of 50



CMU-PT/RNQ/0015/2009
x D10: First Specification of the Architecture

5.3 Monitoring system

Monitoring systems may be FIT monitoring system clients as well. They may subscribe to

receive event messages of any kind. And they also act as probes for delivering alerts and

other critical messages to networks operators through the consoles.

Our idea is to analyze and adapt one monitoring tool to be a FIT monitoring system client.

It will also gives us a more precise technical details over what is needed to adapt such tools

to be a client of our system.

Remarks related to TRONE-aware applications

The proposed TRONE-aware applications will serve as test and validation cases. They

represent three different scenarios or applications that can benefit from the FIT monitoring

system.
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Chapter 6

Conclusion and Next Steps

We proposed a FIT monitoring system framework which is resilient to faults and intru-

sions, providing trustworthiness to the network monitoring and control infrastructure. It is

designed to tolerate both crash and Byzantine fault models. The framework also allows dif-

ferent applications such as security analyzer tools and monitoring systems to become clients

of FIT monitor.

We mapped the FIT monitoring service into a topic-based publish-subscribe system. To

support fault and intrusion tolerance we propose the use of BFT libraries such as SMaRt.

We believe that this first architecture specification of the fault and intrusion tolerant mon-

itoring system will improve monitoring systems for cloud infrastructures. Monitoring and

control event messages will by sent and received in a reliable and secure way. Network opera-

tors and manages will not need to worry anymore about the trustworthiness and availability

of the monitoring systems.

Our next step is to validate the proposed solution in our cloud infrastructure. We are going

to use probes to monitor IaaS such as OpenStack and OpenNebula and consoles to receive

and display event messages sent by probes. Crash failures and attacks will be injected into

the FIT monitoring system, in order to evaluate its effective resilience and trustworthiness.

The results will be of particular interest to PT which have a special interest in improving

the reliability of their monitoring systems.
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