
1

A Fault-Tolerant Session Layer with Reliable
One-Way Messaging and Server Migration Facility

Naghmeh Ivaki, Serhiy Boychenko, Filipe Araujo
CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal

naghmeh@dei.uc.pt, serhiy@student.dei.uc.pt, filipius@uc.pt

Abstract—Despite being extremely successful, TCP has a num-
ber of shortcomings when network disruptions occur, or when
peers do not follow a request-reply interaction: it does not handle
connection crashes, event-driven communication or application
migration. In many cases, programmers must engineer their own
solutions to write reliable distributed applications.

To overcome these limitations, we propose FTSL, a Fault-
Tolerant Session Layer that works on top of TCP. Besides offering
a full-duplex connection, FTSL owns a number of distinctive
features: it tolerates TCP connection crashes, it provides highly
decoupled reliable patterns for one-way communication, and
it enables server-side migration. While the first two greatly
simplify distributed systems programming for a wide range of
applications, the latter enables cloud systems managers to move
a server application for load balance or maintenance, without
moving the entire virtual machine.

We present the FTSL protocol, its implementation, and resort
to performance to show that FTSL imposes a reasonable overhead
for the guarantees it provides.

Index Terms—Fault Tolerance, Application Migration, One-
Way Messaging, TCP, Session Layer

I. INTRODUCTION

Reliable communication lies at the heart of distributed
systems. Over the last few decades, the Transmission Control
Protocol (TCP) [11] has been the most common option to em-
ulate reliable communication over the Internet. Unfortunately,
TCP has several limitations. In this paper we address three of
them. First of all TCP does not address connection failures.
If connectivity fails for some time, endpoints may receive an
exception and fail to determine which messages did or did
not reach the peer, even in request-reply interactions, thus
being unable to rollback to some coherent state. However, for
many operations, such as file transfers, secure shell interaction,
web streaming or messaging, surviving TCP disconnections
might be very practical. In fact, we dare to say that the
TCP/IP stack lacks a session layer capable of making through
disconnections.

TCP provides a full-duplex communication channel, well
suited for a large range of client-server applications. But not
all patterns fit into this spectrum. Sending a message to a
peer without expecting any reply is the simplest possible
coordination pattern. One-way messaging is extremely useful
in event-based systems, where information flows in a single
direction. Group communication, broadcasting mechanisms,
publish-subscribe, or complex event processing systems are
some of the scenarios that need this messaging pattern. We
can find it in some forms of remote procedure calls, including

web services. In some cases, the web client may not need a
reply (although it wants the server to handle the request), but
they are bound to communicate in a request-response model.
We could think for example of online multi-player games.
TCP provides no special coordination for this type of peers,
and reliability is simply not enough, because the sender cannot
tell whether the receiver processed data correctly. Applications
could implement confirmations over TCP (e.g. using a request-
response model), but besides being evidently not one-way
communication, the need to wait for each single response
would undoubtedly slow down performance.

We also address a third limitation of TCP. Especially in the
era of cloud computing and virtualization, it would be quite
valuable to move server from one machine to another without
disrupting services. In fact, migrating applications or virtual
machines inside the same cloud or even among different clouds
is a very useful feature that deserved already some attention
in the existing literature [22], [3], [30], [14]. Unfortunately,
migrating applications is very hard to accomplish with TCP,
because connections would all crash, and the IP address of
the receiving machine would be different. Even a virtual
machine migration might be troublesome if it takes too long.
By addressing all the above issues, we can make distributed
applications, including those running in cloud environments,
more dependable.

To overcome the limitations of TCP, we propose a Fault
Tolerant Session Layer (FTSL). FTSL is a message-oriented
reliable session protocol that provides special support for one-
way communication, besides enabling live server migration
from machine to machine, regardless of their IP addresses.
We compare FTSL with a number of related solutions. FTSL
compares favorably in terms of performance with the heaviest
solutions, like Java Message Service [25], and shows a reason-
able degradation against lighter solutions such as TCP or an
optimized version of RSocket [23]. We present the challenges,
the design and some points of future improvement.

This paper is organized as follows. The next section pro-
vides a review of related work. Section 3 describes FTSL: its
reliability, one-way messaging and server migration. Section
4 presents FTSL’s architecture and implementation. Section 5
presents the experimental evaluation. Section 6 concludes this
paper.

II. RELATED WORK

TCP uses sequencing, acknowledgments and retransmission
to detect and repair packet losses, but it cannot overcome



2

longer communication outages. Normally, the maximum tol-
erable disconnection period is between 30 and 90 seconds [1].
Recovery from the outages is more complex than it looks like,
because programmers cannot easily determine which messages
did or did not get through. We found a large body of work in
the literature to solve disconnection and crash problems.

SCTP [21] provides support for tolerating network con-
gestion and failure by establishing multiple redundant paths
between the client and the server. Like in our own system,
applications may not use TCP directly, but the tolerance of
SCTP comes from the redundancy, alone. Moreover, SCTP
does not focus on one-way messaging or relocation of the
server.

Our system also bears some similarities to solutions that
insert a layer between TCP and the application. This layer
reestablishes the lost sessions after reconnecting [1]. Another
work targeting some (but not all) of the FTSL goals is Robust
Socket (RSocket) [23], which solves the problem of broken
TCP connections. RSocket changes some Java core libraries,
leaving the standard Java TCP interface untouched. To recover
from TCP crashes it uses control messages over a separate
channel.

Zandy and Miller propose an even simpler idea in [29].
Authors use an in-flight circular buffer to store sent messages.
The size of this buffer is the sum of the size of the local TCP
send buffer and the size of the remote TCP receive buffer.
When the application sends a message, a copy is saved into
the in-flight buffer, and a sent bytes counter is updated. Since
it is circular, when the buffer fills, new data automatically
delete the oldest. Receivers also store the number of bytes
read by the application. Once peers recover from a connection
failure, they exchange this counter, to let each other know what
to resend. With this mechanism there is no need for extra
acknowledgements during an interaction.

Other systems redirect all TCP traffic between client and
server through a proxy that keeps the state of the connection.
If the server crashes, the proxy switches the connection to a
backup server and ensures that the new connection is consis-
tent with the client’s state. This approach does not tolerate TCP
connection failures caused by network crashes. Furthermore,
the proxy is a new single point of failure [17]. Similarly,
HydraNet-FT [28] replicates services across an internetwork
and provides a single, fault-tolerant service. It uses TCP with a
few modifications on the server side. We can also find related
solutions in ST-TCP [18], an extension of TCP to overcome
server failures. In MI_TCP [13] servers of a cluster write
a checkpoint of the TCP connection state. This allows the
TCP connection to migrate to another server in the cluster
and enables servers to transparently take over the connec-
tion. ER-TCP [27] combines primary-backup replication with
logging, to achieve fault-tolerance on the server side of TCP
connections. Orgiyan and Fetzer in [20] propose a TCP tapping
approach to replication that masks TCP endpoint failures, such
as server host crashes and server process crashes. Many of
these systems tolerate server crashes, but not network crashes.
Some of these solutions also require kernel modifications.

Another purpose of FTSL is to reconcile the conflict-
ing goals of one-way messaging and reliable delivery of

messages. In the (blocking) request-reply paradigm, we can
find technologies supporting different levels of reliability. For
example, Remote Procedure Calls (RPCs) or variants with
at-least-once [4] or at-most-once [8] message delivery. Web
services [6] provide an interesting example, because they are
usually request-response, but may also support one-way mes-
saging. However, the sender will not know anything about the
result of its operations. Many messaging systems provide truly
one-way reliability to clients, e.g., Microsoft’s MSMQ [10] or
the Java Message Service (JMS) [25], supported by a very
large number of messaging stacks, like Websphere MQ [9],
JBoss [12], HornetQ [16], etc. The message broker may ensure
guaranteed delivery, and strong decoupling between peers, but
it also makes communication slower. In some technologies,
the broker may also be a single point of failure. Messaging
systems are excellent for publish-subscribe systems or for
reliable (even transactional) point-to-point communication.
Their shortcoming is the overhead, the complexity of the
infrastructure and of the programming APIs.

Checkpointing and restarting applications to load balance
or to tolerate faults is not a new idea. Checkpointing is
particularly useful for grid or cluster computing [15], [2],
[19], where faults or shutdowns may wipe many hours of
computation. Checkpointing may occur at the user or kernel
level. The former requires fewer configuration, but fails to
properly save kernel state. Checkpointing distributed applica-
tions is a challenge of its own. Solutions for this exist, but
they are complex [7]. We address the simpler case of server
checkpointing, which is very useful for the extremely frequent
client-server paradigm and for cloud services that one may
need to migrate. This approach is much lighter than migrating
entire Virtual Machines.

III. THE FAULT-TOLERANT SESSION LAYER

FTSL is a TCP-based reliable, connection and message-
oriented session layer protocol. It offers applications the pos-
sibility of keeping interactions by surviving network failures.
Unlike TCP, which is stream-oriented, in FTSL applications
explicitly mark message boundaries. For performance reasons,
applications may send their messages in multiple chunks of
data. By relying on the TCP/IP layers, who are often limited
by NAT or firewall schemes, the initiative to connect or to
recover from network failures always belongs to the client
side.

A. Protocol Operation Overview

We use a Sent Buffer to keep sent, but unconfirmed FTSL
packets and a Received Buffer to keep unread messages.
The size of the sent buffer is limited to the the size of
its equivalent in the TCP socket, to avoid blocking write
operation in FTSL, due to lack of space. Unlike the approaches
we reviewed in Section II, e.g. [29], we could not recover
from TCP connection crashes with one single buffer on the
sender side, because FTSL does more than simple connection
recovery. For example, FTSL enables applications to confirm
the reception of messages, thus requiring some out-of-band
data, like acknowledgements, that must not wait in the buffers.



3

Since the same channel is used for both data and control
messages, in contrast to RSocket, FTSL needs to keep reading
from the channel to receive control messages. A receive buffer
is therefore necessary as well. It allows the FTSL to read from
the TCP socket in parallel. We ruled out the possibility of using
urgent TCP data, because the TCP stacks seem to suffer from
multiple issues, including incompatible interpretations of RFC
793 [11] and incorrect implementations of RFC 1122 [5].

All messages sent by the application go through FTSL,
which adds its own header. This header includes the session
ID (SID), which uniquely identifies each session, a flag to
identify the type of the message, a packet ID (PID), and
a message ID (MID). These uniquely identify each packet
and each message. FTSL piggybacks the acknowledgment of
the last packet received (rPID), the last message delivered to
the application (dMID), and the last message delivered and
processed by the application (pMID) in the header.

The server side generates a unique SID that lasts for the life
of the session. We use a flag field to identify the type of the
message such as APP, ACK, and CLS. APP serves for data
messages from the application layer. FTSL explicitly marks the
last packet of a message. ACK and CLS are control messages.
The peers send acknowledgments (ACK) periodically if some
messages remain unacknowledged. CLS is sent to notify the
other party that the connection is going to be closed. FTSL
closes the connection only if the application explicitly requests
this.

B. End-to-End Reliability For One-Way Messaging Pattern

We argue that the right solution for reliable one-way mes-
saging pattern is somewhere in-between the extremes of never
sending any feedback and the request-reply paradigm. On one
hand, closing the loop and letting the sender know the result of
its actions enables the creation of more reliable applications.
On the other hand, we must not do it on a single-message
basis, because this is too costly. The mechanism we propose
in FTSL offers end-to-end reliability to one-way operations, by
using an asynchronous confirmation mechanism. This unties
the sender from the receiver to let them do independent
progress. Refer to Figure 1. The sender uses FTSL to send
its message and gets back an identifier from the session
layer, which saves and sends the message using TCP. To
support a large number of receivers, the sender proceeds
without blocking after sending the message. However, it may
later know what happened to the message, depending on the
options it picks for that specific message at send time. It can
get a session-layer acknowledgment, or an application-layer
acknowledgment. In the former case, the receiver’s session
layer acknowledges the message at reception time (in fact for
performance reasons we usually delay this operation). In the
latter case, the receiver application acknowledges the message
after processing it, either explicitly or automatically. In the
explicit confirmation the application calls an FTSL method.
The automatic confirmation occurs once a listener method of
the receiver invoked by FTSL finishes. To do the FTSL-level
confirmation we rely on the rPID and dMID, while for the
application-level confirmation we rely on pMID.

The error case is different. For some reason, the receiver
may be unable to acknowledge the message, e.g., because
its contents trigger some exception. If the receiver does not
acknowledge and calls recv() again, the FTSL will redeliver
the same message, using a special flag to inform the receiver
of that fact. After a predetermined number of failures, in the
next recv(), FTSL delivers the next message and sends back
an indication of error to the sender side. This bears some
similarities to the DUPS_OK_ACKNOWLEDGE mode of JMS,
where clients can get repeated messages. In both cases, of
success or error, once the acknowledgment gets to the sender
side, the application can get it using an explicit call or through
a previously registered callback method. We think that this
does not violate the logic of one-way communication, because
neither of these methods forces the sender to block at send
time.

C. Checkpointing for Server Migration

FTSL lets server applications move from one machine (or
port) to another, something that is particularly useful in cloud
environments. This releases managers from the burden of
halting and moving entire virtual machines, for maintenance or
load balancing. We limit migration operations to the endpoints
that only accept connections, which is the case of typical
servers. The idea is that a server usually does not start
connections to other endpoints, or else we would need a
distributed checkpoint algorithm, such as the ones of [7], [26].
Despite being simpler, we believe that this alternative covers
many (if not most) cases of interest, because the client-server
paradigm is ubiquitous.

To enable the migration mechanism we need a naming
service that takes the name of an FTSL session and gives
back the IP address and port of the server. We use an RMI
object for that purpose and a simple rebind and unbind pair
of operations. The only thing that clients need to know is the
(fixed) address of the naming server, to effectively allow the
FTSL server to change place. We did not use the Java Naming
and Directory Interface (JNDI) shipped with GlassFish for this
task, because we did not manage to make it run efficiently.
Sometimes it could be 5 to 10 times slower than what we
eventually managed to do.

At the heart of this process is the Java serialization mech-
anism, which enables the server to save the Java classes
implementing FTSL. Once FTSL receives an order to serialize,
it must halt its actions and it must not handle further packets
from the client to preclude any state that is subsequent to the
checkpoint. FTSL will not resume before receiving another
explicit request from the application. The serialization order
completely freezes the protocol on the server side. From
the point of view of the client, once TCP signals the end
of the connection, FTSL starts the reconnection procedure,
which involves a naming server lookup followed by a TCP
connection. Since the client keeps its internal FTSL state
(buffers, variables, etc.) and so does the server, the next time
they restart, the buffers are in the same state, the difference
being the channel that has no messages among them. This may
prompt retransmissions, if acknowledgments are missing.



4

Sender's 
Session 
Layer

Receiver's 
Session 
Layer

Sender

Receiver 

assign id, save
(m) & write(m)

send(m)

read(m) & save(m) 

acknowledge(m)
automatic or explicit

recv(m)

delete(m)

delete(m)

t

t

t

t

se
ssi

on
-la

ye
r 

ac
kn

ow
led

gm
en

t

ap
plic

ati
on

-la
ye

r 

ac
kn

ow
led

gm
en

t

callback or 
explicit request 

mutually exclusive 
alternatives

Fig. 1. Successful one-way messaging pattern

TCP Socket API

Server 
Session

API

Application

API

Failure Handler

Sent Buffer

Recieved Buffer R W
E
L

M
L

Events

Se
ss

io
n

Serializer

Fig. 2. FTSL Architecture

IV. FTSL IMPLEMENTATION AND API

A. Implementation

Figure 2 displays the most important components of
FTSL. We implemented FTSL in Java. The classes
ServerSession and Session are inspired on their TCP
counterparts, the ServerSocket and Socket. An instance
of ServerSession class is created by the server to wait
for session requests from the clients. Once a connection is
setup, the server gets an instance of the class Session,
which is connected to a similar one on the client. Most
of the actual functionalities of FTSL are implemented in
this Session class. It provides send and receive operations
to the peers and takes the responsibility of keeping track
of the message flow. Upon creation of the session, an in-
stance of ReceivedBuffer, SentBuffer, and Event
are created inside the session. The messages sent by the
application are saved in the SentBuffer and are deleted
after acknowledged. The received messages are saved in
the ReceivedBuffer and are deleted either after being
delivered to the application layer (for the messages that
do not need the confirmation) or after being confirmed by
the application (otherwise). To control concurrency coming
from simultaneous access of FTSL and application threads
to the SentBuffer and ReceivedBuffer objects, we
used a java.util.concurrent BlockingQueue. The
Failure Handler serves to restore the session whenever
the TCP connection crashes. This involves setting up a new
TCP connection, followed by the process of resending all

messages unacknowledged by the peer.
To receive messages, the application may implement the

MessageListener interface or may call API methods
explicitly. In the former case, delivery of a message will occur
immediately as the Session object calls back the appropriate
user method. FTSL also uses events to notify applications of
changes in the status of the previously sent messages. These
are Event objects that applications may, likewise, receive
synchronously through API method calls or asynchronously
through previously registered EventListener callbacks.

Blocking send operations are taken care by the application
main thread, whereas non-blocking ones are controlled by a
session thread. In the Session object, a new thread is also
created to read the messages from the input stream. Depending
on the use of listeners, one or two more threads might be
created in the Session: one to callback the application for
messages, another one for events. There is still one more
thread in the session taking care of the acknowledgements.
Although, an acknowledgment should be sent for each mes-
sage, to decrease the overhead of the system we often wait to
piggyback the same data in the send messages. Since this could
result in long periods without sending any acknowledgment,
we dedicate an extra thread to periodically check if there is
any unacknowledged message.

We implemented the Java Serializable interface in the
ServerSession and Session classes to enable check-
pointing the state of active server-side FTSL sessions. We
intercept and serialize all the sessions using Serializer to
enable the server to move all active sessions to a new machine
without losing the state of the interactions.

B. The Application Programming Interface of FTSL

We show the main part of the FTSL’s API in Table I. It
provides four major operations to the applications regarding
its core functionalities: creation of a session, termination of a
session, sending to and receiving from the session. The server
creates a ServerSession and waits in the accept method
for a session connection request, whereas the client takes the
initiative to create a session, by instantiating a new Session
object. The server can intercept and save all the active sessions



5

TABLE I
FTSL API

ServerSession Exceptions
ServerSession(address, port) IOException
Session ServerSession.accept() -
void ServerSession.close() -
Session Exceptions
Session(address, port) UnknownHostException,IOException
int getSessionID() -
InetAddress getInetAddress() -
int getPort() -
InetAddress getLocalAddress() -
int getLocalPort() -
void setEventListener(EventListener el) -
void setMessageListener(MessageListener
el)

-

void close() SessionCloseException
void abort() -
void sendObject(Object object) TLMException,SessionException
void send(byte[] buffer) TLMException,SessionException
void send(byte[] buffer, int off, int len) TLMException,SessionException
void sendEOM(byte[] buffer) TLMException, SessionException
void sendEOM(byte[] buffer, int off, int
len)

TLMException,SessionException

int sendObjectReqAck(Object object) TLMException,SessionException
int sendEOMReqAck(byte[] buffer) TLMException,SessionException
int sendEOMReqAck(byte[] buffer, int
off, int len)

TLMException,SessionException

void sendEOM() SessionException
int sendEOMReqAck() SessionException
int blockingSendObject(Object object) TLMException,SessionException
void blockingSend(byte[] buffer) TLMException,SessionException
void blockingSend(byte[] buffer, int off,
int len)

TLMException,SessionException

void blockingSendEOM(byte[] buffer) TLMException,SessionException
void blockingSendEOM(byte[] buffer, int
off, int len)

TLMException,SessionException

int blockingSendObjectReqAck(Object
object)

TLMException,SessionException

int blockingSendEOMReqAck(byte[]
buffer)

TLMException,SessionException

int blockingSendEOMReqAck(byte[]
buffer, int off, int len)

TLMException, SessionException

void blockingSendEOM() SessionException
int blockingSendEOMReqAck() SessionException
DataMessage recv() SessionException
DataMessage blockingRecv() SessionException
void Session.confirm() -
void Session.confirm(status) -
Event getStatus() -
Event blockingGetStatus() -
String getStatus(int id) -

by calling the serialize method of ServerSession.
After creating the session, the peers can interact symmetrically,
using send-like and recv-like methods or callbacks. FTSL
provides a variety of send methods to allow the application
to i) send the messages in small pieces for the sake of
performance; ii) identify which level of acknowledgment
(Application or Session Level) is expected for each particular
message; and iii) to allow the application to send the messages
in a blocking or non-blacking manner. Since the messages
can be sent in pieces, the applications must mark the end of
message (EOM). Some examples of the send methods are
sendEOM, sendEOMReqAck, and blockingSend. The
receive operation can also occur in a blocking or non-blocking
flavors. The application calls the confirm method to notify
the peer that it took care of a message, whenever such mes-
sage requests for an application-level acknowledgment. Two
methods, getStatus and blockingGetStatus, can be
used by the application to get the status of the messages sent.

We suffix all the send methods with an EOM, whenever
the method bounds the end of message, e.g., sendEOM. One
should note that a single message may use a single method that

should have the EOM suffix. To identify the acknowledgment
level, FTSL offers some more send methods. The applica-
tions can ask for the receiver’s confirmation using the methods
whose names end by ReqAck, such as sendEOMReqAck. In
addition to the above send methods, FTSL provides blocking
methods that start with blockingSend.

All the send methods throw an SessionException
when the session is already closed and a TLMException
when the length of the message is larger than the total Sent
Buffer’s size.

The Peers can simply abort the session using the abort
method, which closes the connection and the session im-
mediately. To close the session safely, peers should use the
close method. This prevents the application from send-
ing new messages and waits until all messages reach the
peer. If the connection is crashed then the FTSL throws
SessionCloseException. In this case the application
can use abort to close the session.

We made the source code of FTSL publicly available
for download (URL: http://eden.dei.uc.pt/~naghmeh/ftsl/index.
html). The source code includes three basic examples to
demonstrate how to use the FTSL’s API.

V. EVALUATION OF FTSL

In this section we evaluate the performance, overhead and
scalability of FTSL, by comparing it to alternative solutions.
We also verify FTSL’s behavior in the presence of failures and
migration operations. We implemented three versions of a Java
client-server application, using TCP, RSocket, and FTSL. We
used two computers sharing the same Local Area Network.
We ran all the clients on a single process, using different
threads on a Mac OS X, version 10.6.7, with a 2.4GHz Intel
Core 2 Duo processor, 4GB of RAM and 3MB of cache.
The server ran on a virtualized infrastructure with Linux
version 2.6.34.8, with a 2.8 GHz Intel processor with four
cores, 12 GB of RAM and 8 MB of cache. We consider
three operations, Invoke1, Invoke2 and Invoke3. They
receive a small string and return another small string. The
difference is that Invoke1 replies immediately, Invoke2
sleeps 1 millisecond (ms) before replying, whereas Invoke3
sleeps 2 ms. The reason why we put the server threads to
sleep is to minimize interference with our results. Despite this
minimization, one should be aware that putting a thread to
sleep and waking it up takes around 0.08 ms on the machine
where we ran the server (and 0.15 on the client machine). To
determine this number we ran a single-threaded program that
slept for 1 ms 1000 times.

A. FTSL’s Performance

Figure 3 shows the latency of the plain TCP, RSocket, and
FTSL, for different numbers of clients. Latency is simply the
round-trip-time of the request-response interaction. The plot
also shows the performance degradation of FTSL compared
to a plain TCP implementation on the right side vertical axis.
Degradation is the difference between the latency of FTSL
and TCP relative (divided by) FTSL’s latency ((FTSL −
TCP )/FTSL). Our initial results showed that RSocket is



6

-­‐20	
  

-­‐10	
  

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

9	
  

10	
  

1	
   2	
   5	
   10	
   20	
   50	
   100	
  

FT
SL
	
  D
eg
ra
da

,o
n	
  
(%

)	
  

La
te
nc
y	
  
(m

s)
	
  

Number	
  of	
  Clients	
  

Latency	
  and	
  Degrada,on	
  

-sl_invoke1	
   rsocket_invoke1	
   tcp_invoke1	
  

-sl_invoke2	
   rsocket_invoke2	
   tcp_invoke2	
  

-sl_invoke3	
   rsocket_invoke3	
   tcp_invoke3	
  

Degrada?on_invoke1	
   Degrada?on_invoke2	
   Degrada?on_invoke3	
  

Fig. 3. Latency and Degradation of FTSL

particularly slow due to the Nagle’s algorithm [24], which
we could not switch off. To do a fair comparison, we have
implemented that possibility in RSocket. The figure makes the
processing time of the different Invoke operations apparent.
Inevitably, TCP is the most efficient option (because both
RSocket and FTSL use it underneath). With only 1 client TCP
and RSocket take a little bit more than half the time of FTSL to
call Invoke1. An important point here is that a significant
part of the overhead we observe for a growing number of
clients comes from putting threads to sleep and waking them
back. First, we notice that 100 clients, take 0.08 ∗ 100/4 = 2
ms in the process. However, since they do not end up doing the
actions completely in parallel (say client 1 can finish before
client 100), the overhead of the 100 server threads is not
exactly seen as 2 ms in each client. TCP and RSocekt have an
overhead slightly over 0.6 ms (Invoke2), whereas the 100
clients take approximately 3 times more to run than a single
one (because they run in the same dual core client). This is
consistent with the latency growth we observe for Invoke2
and Invoke3. Invoke1 is faster because the server does
not sleep before responding. In FTSL, the growth in latency
is proportionally larger to the number of threads it has: as we
will show in Figure 6, this is typically 3 times more than TCP
and RSocket for 100 clients.

To examine the throughput, the client sends a large number
of requests to the server (1000 in our tests). We set the server
to send one reply to the client after receiving and processing
all the requests, so that the client can calculate the overall
time it takes from the first request it sends until the server
finishes the last request (the impact of the extra reply in the
throughput measurements is ignored). In Figure 4 we show the
results obtained using FTSL, TCP and RSocket. The values
shown in the figure for degradation are calculated using the
throughput of TCP minus the throughput of FTSL divided by
the throughput of TCP ((TCP − FTSL)/TCP ).

In the left hand-side of Figure 4 we show a complete view,
whereas in the right hand-side we show a partial view. The
numbers shown represent the average throughput observed by
each client. This means that the overall throughput at the
server actually never decreases. What we can see is that each

client may notice a sharp reduction in performance from its
own point of view, when the server runs many more threads.
The results show the FTSL’s throughput for Invoke2 and
Invoke3 is almost the same as TCP’s throughput, except
when 100 clients are running. This means that although FTSL’s
latency suffers from its extra operations and threads, the
simultaneous reading from the socket compensates it and
leads to the same throughput as FTSL. With 100 clients,
the additional threads of FTSL, which serve to acknowledge
messages and to read data from the socket, make it pay a
reasonably small cost. For the Invoke1 TCP and RSocket’s
throughput decreases when the number of the clients increases
(due to the large number of the threads running). In the
same case, FTSL shows much lower throughput than TCP and
RSocket. This is caused by the FTSL’s latency, which leads
to an extra overhead in this scenario because the requests are
continuously sent and FTSL needs to keep more messages in
its own buffer. Nevertheless, future implementations of FTSL
may consider the elimination of many of these threads (e.g.,
sharing them among different connections).

B. FTSL’s Scalability

To evaluate the scalability of FTSL, we ran a multicast
test scenario and compared it with UDP multicast and JMS,
presumably the fastest, and a slow robust option, respectively.
UDP is assumedly not reliable, as messages may be lost or
delivered out of order. Unlike this, typical implementations of
JMS use a powerful but heavy server node between publishers
and subscribers, thus delaying communication. Communica-
tion cannot flow back to the publisher, unless it prepares
destinations for reply messages. Relocation of the server
does not seem reasonable to do, but one may trivially move
or replace communicating peers. We do not include Java’s
Remote Method Invocation (RMI) in this comparison, because
it sports a blocking request-response interaction that would be
difficult to twist in our tests.

To evaluate the scalability of FTSL in comparison to the
other solutions, we designed a test where several clients (from
one to 500) connect to the server, before getting some data
back. Since in this test, the FTSL client asks the server for the
application layer confirmation, we ran two different scenarios
with JMS as well, to make a fair comparison: one without
confirmation and one with confirmation. Figure 5 shows the
results. The scalability in these tests is defined as the number
of clients served simultaneously in a unit of time. As expected,
the UDP multicast is more scalable than FTSL (almost two
times) and FTSL is more scalable than JMS (almost two
times). If we need to confirm the JMS publisher about the
reception of the messages, the scalability decreases almost to
half. Overall, FTSL ensures the delivery of messages much
faster than JMS.

C. FTSL’s Overhead

To examine FTSL’s overhead, we used Oracle’s JConsole
to monitor the heap memory, CPU usage, and the number
of threads running on the server. We used varying numbers
of clients, between 1 and 100. Each client sends 100 objects



7

-­‐5	
  

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

0	
  

100	
  

200	
  

300	
  

400	
  

500	
  

600	
  

700	
  

800	
  

900	
  

1000	
  

1	
   2	
   5	
   10	
   20	
   50	
   100	
  

FT
SL
	
  D
eg
ra
da

,o
n	
  
(%

)	
  

Th
ro
ug
hp

ut
	
  (R

eq
/s
ec
)	
  

Number	
  of	
  Clients	
  

Throughput	
  and	
  Degrada,on	
  (Par,al	
  view)	
  

-sl_invoke2	
   rsocket_invoke2	
   tcp_invoke2	
  

-sl_invoke3	
   rsocket_invoke3	
   tcp_invoke3	
  

Degrada?on_invoke2	
   Degrada?on_invoke3	
  

-­‐20	
  

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

0	
  

5000	
  

10000	
  

15000	
  

20000	
  

25000	
  

30000	
  

35000	
  

40000	
  

1	
   2	
   5	
   10	
   20	
   50	
   100	
  

FT
SL
	
  D
eg
ra
da

,o
n	
  
(%

)	
  

Th
ro
ug
hp

ut
	
  (R

eq
/s
ec
)	
  

Number	
  of	
  Clients	
  

Throughput	
  and	
  Degrada,on	
  (Complete	
  view)	
  

-sl_invoke1	
   rsocket_invoke1	
   tcp_invoke1	
  

-sl_invoke2	
   rsocket_invoke2	
   tcp_invoke2	
  

-sl_invoke3	
   rsocket_invoke3	
   tcp_invoke3	
  

Degrada?on_invoke1	
   Degrada?on_invoke2	
   Degrada?on_invoke3	
  

Fig. 4. Throughput and Degradation of FTSL

0	
  

500	
  

1000	
  

1500	
  

2000	
  

2500	
  

1	
   2	
   5	
   10	
   20	
   50	
   100	
   200	
   500	
  

Th
ro
ug
hp

ut
	
  (C

lie
nt
s/
se
c)
	
  

Number	
  of	
  Clients	
  

Scalability	
  	
  

FTSL	
  

UDP	
  

JMS	
  

JMS	
  with	
  conforma:on	
  

Fig. 5. Scalability of FTSL in comparison to JMS and UDP multicast

to the server per second during 5 minutes. The server writes
each of these objects, carrying an integer and a name to
the disk. Figure 6 compares the utilization of resources. As
shown in the figure, TCP and RSocket use almost the same
amount of resources. The extra complexity of FTSL imposes a
little extra price in the CPU utilization of the server. Memory
utilization of FTSL is higher than in TCP, most likely due to
the extra buffering and the extra threads. We can see that each
connection has two more threads in FTSL than TCP. One of
these threads is for reading the messages from the TCP Socket
and the other one is for acknowledgement.

D. Network Failure and Recovery

To evaluate FTSL’s recovery from failures, we emulate
connection crashes, by switching off the network interface,
while the client sends a long file (e.g. music video) to the
server. After one minute we resume the connection. For
100 repetitions of the test, we observed that, while the first
connection to the server takes 15 ms in average, reconnection
plus sending lost messages took an average of 26 ms, which,
we believe, is quite fast.

E. Serialization and Migration

Figure 7 shows the average time of an FTSL server mi-
gration for 30 trials. DeserializationNS is the time the server

1.
2	
  

1.
2	
  

1.
1	
  

1.
2	
  

1.
2	
  

1.
0	
   2.
4	
  

1.
6	
  

1.
5	
   4.
7	
  

3.
2	
  

3.
2	
  

9.
6	
  

6.
3	
  

6.
3	
  

20
.0
	
  

15
.6
	
  

15
.6
	
  

38
.5
	
  

30
.3
	
  

29
.3
	
  

0.0	
  

5.0	
  

10.0	
  

15.0	
  

20.0	
  

25.0	
  

30.0	
  

35.0	
  

40.0	
  

45.0	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

1	
   2	
   5	
   10	
   20	
   50	
   100	
  

CP
U
	
  U
sa
ge
	
  (%

)	
  

13
.8
	
  

12
.9
	
  

12
.3
	
   24
.8
	
  

12
.4
	
  

12
.9
	
   34

.1
	
  

16
.4
	
  

15
.7
	
  

53
.7
	
  

24
.4
	
  

23
.1
	
  

72
.0
	
  

33
.3
	
  

32
.6
	
  

97
.9
	
  

50
.6
	
  

46
.0
	
  

11
0.
0	
  

62
.6
	
  

62
.2
	
  

0.0	
  

20.0	
  

40.0	
  

60.0	
  

80.0	
  

100.0	
  

120.0	
  
FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

1	
   2	
   5	
   10	
   20	
   50	
   100	
  

M
em

or
y	
  
U
sa
ge
	
  (m

b)
	
  

16
	
  

16
	
  

14
	
  

20
	
  

19
	
  

16
	
   31
	
  

24
	
  

21
	
   51

	
  
34
	
  

31
	
  

91
	
  

54
	
  

51
	
  

20
1	
  

10
4	
  

10
1	
  

31
3	
  

11
6	
  

11
3	
  

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

300	
  

350	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

FT
SL
	
  

Rs
oc
ke
t	
  

TC
P	
  

1	
   2	
   5	
   10	
   20	
   50	
   100	
  

N
um

be
r	
  O

f	
  T
hr
ea
ds
	
  

Number	
  of	
  Clients	
  

Fig. 6. Resource Usage

consumed communicating with the naming server during dese-
rialization. Serialization is the time the server took to generate
an object and save it to disk. Deserialization time refers to
the reverse operation. Server Migration is the time it took
to manually restart the server on a different port. ClientRe-
connection is the time it took for the last client to connect,
once the server is ready. We varied the number of clients
with active connections to the migrating server between 1 and



8

0	
  

200	
  

400	
  

600	
  

800	
  

1000	
  

1200	
  

1400	
  

1600	
  

1800	
  

1	
   2	
   5	
   10	
   20	
   50	
   100	
  

Ti
m
e	
  
(m

s)
	
  

Number	
  of	
  Clients	
  

serializa0on	
   serverMigra0on	
   deserializa0onNS	
  

deserializa0on	
   clientReconnec0on	
  

Fig. 7. FTSL Server Migration Time

100. We could conclude that server migration time is nearly
independent on the number of clients. Despite this, the time
taken for serialization and deserialization, and communication
with the naming service during deserialization increases slowly
with the number of clients (Figure 7). In addition, we observed
that communication with the naming service, more precisely
the rebind operation (deserializationNS), has an important
impact on the overall migration time, while the reconnection
time of the clients has the most significant impact. This time
mainly depends on the frequency at which they check for the
return of the server.

VI. CONCLUSIONS

In this paper we presented a Fault Tolerant Session Layer
(FTSL), which covers several limitations of TCP for dis-
tributed applications that need fault tolerance and a higher
level of reliability. With FTSL, such applications can 1) trans-
parently recover from TCP connection crashes; 2) they can
track the status of the messages that are sent, and 3) servers can
be easily migrated to other machines. Our experiments show
the feasibility of our approach. According to the results, per-
formance and resource utilization of FTSL are comparable to
the simpler RSocket. Even comparing to TCP, FTSL achieves
reasonable results. By being reliable, by providing one-way
communication and by facilitating migration for clouds, we
believe that FTSL closes a gap that exists to this day in
distributed systems. In the future, we plan to keep improving
some aspects of FTSL, like the number of threads it uses that
can cause a sensible reduction of performance in large servers.

ACKNOWLEDGMENTS

This work was partially supported by the Portuguese
Foundation for Science and Technology contract
SFRH/BD/67131/2009 and by the project CMU-
PT/RNQ/0015/2009, TRONE - Trustworthy and Resilient
Operations in a Network Environment.

REFERENCES

[1] Lorenzo Alvisi, Thomas C Bressoud, and Ayman El-Khashab. Wrapping
Server-Side TCP to mask connection failures. In proceeding IEEE
INFOCOM, 2001.

[2] David P. Anderson. Boinc: A system for public-resource computing and
storage. In GRID, pages 4–10, 2004.

[3] Devi Prasad Bhukya, Reeta Sony AL, and Gautam Muduganti. On web
services based cloud interoperability. International Journal of Computer
Science Issues(IJCSI), 9(5), 2012.

[4] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote
procedure calls. ACM Trans. Comput. Syst., 2(1):39–59, February 1984.

[5] R. Braden. RFC 1122 Requirements for Internet Hosts - Communication
Layers. Internet Engineering Task Force, October 1989.

[6] Ethan Cerami. Web Services Essentials: Distributed Applications with
XML-RPC, SOAP, UDDI & WSDL. O’Reilly Media, Inc., 2002.

[7] K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining
global states of distributed systems. ACM Transactions on Computer
Systems, 3(1):63–75, 1985.

[8] Troy Bryan Downing. Java RMI: Remote Method Invocation. IDG
Books Worldwide, Inc., Foster City, CA, USA, 1st edition, 1998.

[9] J. Hart. WebSphere MQ: connecting your applications without complex
programming. IBM WebSphere Software White Papers, 2003.

[10] S. Horrell. Microsoft message queue. Enterprise Middleware, 1999.
[11] Information Sciences Institute. RFC 793, 1981. Edited by Jon Postel.

Available at http://rfc.sunsite.dk/rfc/rfc793.html.
[12] JBoss Community. Community driven open-source middleware.

http://www.jboss.org/. Last accessed on July, 4th 2013.
[13] Hal Jin, Jie Xu, Bin Cheng, Zhiyuan Shao, and Jianhui Yue. A

fault-tolerant TCP scheme based on multi-images. In IEEE Pacific
Rim Conference on Communications Computers and Signal Processing
(PACRIM 2003), pages 968–971, Victoria, Canada, 2003.

[14] Akane Koto, Hiroshi Yamada, Kei Ohmura, and Kenji Kono. Towards
unobtrusive VM live migration for cloud computing platforms. In
Proceedings of the Asia-Pacific Workshop on Systems, page 7, 2012.

[15] M. Litzkow and M. Livny. In 8th International Conference of Distributed
Computing Systems,.

[16] M. Lui, M. Gray, A. Chan, and J. Long. Scaling your spring integration
application. Pro Spring Integration, pages 529–559, 2011.

[17] D. Maltz and P. Bhagwat. TCP splicing for application layer proxy
performance. research report 21139, IBM research division., 1998.

[18] M. Marwah and Sh. Mishra. TCP server fault tolerance using connection
migration to a backup server. In proceeding international conference on
dependable systems and networks (DSN), pages 373–382, 2003.

[19] B. Nicolae and F. Cappello. Blobcr: Efficient checkpoint-restart for hpc
applications on iaas clouds using virtual disk image snapshots. In High
Performance Computing, Networking, Storage and Analysis (SC), 2011
International Conference for, pages 1 –12, nov. 2011.

[20] M. Orgiyan and C. Fetzer. Tapping tcp streams. In Network Computing
and Applications, 2001. NCA 2001. IEEE International Symposium on,
pages 278–289, 2001.

[21] C. Metz R. Stewart. Sctp: new transport protocol for tcp/ip. IEEE
Internet Computing, Vol. 5, No. 6:pp. 64–69, 2001.

[22] Ajith Ranabahu, E. Michael Maximilien, Amit Sheth, and Krishnaprasad
Thirunarayan. Application portability in cloud computing: An abstrac-
tion driven perspective. IEEE Transactions on Services Computing,
99(1):1, 5555.

[23] R.Ekwall, P.Urban, and A.Schiper. Robust TCP connections for fault
tolerant computing. In proceeding 9th international confeence on
parallel and distributed systems (ICPADS), 19:501—508, 2002.

[24] Jin Rencheng, Meng Xiao, Meng Lisha, and Wang Liding. A design of
efficient transport layer protocol for wireless sensor network gateway.
In 2nd International Conference on Signal Processing Systems, pages
V1–775 –V1–780, July 2010.

[25] M. Richards, R. Monson-Haefel, and D. A. Chappell. Java message
service. O’Reilly Media, 2009.

[26] Kassem Saleh, Hasan Ural, and Anjali Agarwal. Modified distributed
snapshots algorithm for protocol stabilization. Computer Communica-
tions, 17(12):863–870, December 1994.

[27] Zhiyuan Shao, Hai Jin, Bin Cheng, and Wenbin Jiang. ER-TCP: an
efficient fault-tolerance scheme for cluster computing. The Journal of
Supercomputing, 2007.

[28] Gurudatt Shenoy and Suresh K Satapati. HYDRANET-FT: network sup-
port for dependable services. In international conference on distributed
computing systems, 2000.

[29] Victor C. Zandy and Barton P. Miller. Reliable network connections.
In Proceedings of the 8th annual international conference on Mobile
computing and networking, pages 95–106, 2002.

[30] Yi Zhao and Wenlong Huang. Adaptive distributed load balancing
algorithm based on live migration of virtual machines in cloud. In Fifth
International Joint Conference on INC, IMS and IDC, 2009. NCM ’09,
pages 170–175, 2009.


